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This article discusses the role of software testing in a security-oriented software development process. It
focuses on two related topics: functional security testing and risk-based security testing. Functional
testing is meant to ensure that software behaves as it should. Therefore, it is largely based on software
requirements. Risk-based testing is based on software risks, and each test is intended to probe a specific
risk that was previously identified through risk analysis.

Introduction

This document discusses the role of software testing in a security-oriented software development
process. It focuses on two related topics: functional security testing and risk-based security testing.

Functional testing is meant to ensure that software behaves as it should. Therefore, it is largely based on
software requirements. For example, if security requirements state that the length of any user input must
be checked, then functional testing is part of the process of determining whether this requirement was
implemented and whether it works correctly.

Analogously, risk-based testing is based on software risks, and each test is intended to probe a specific
risk that was previously identified through risk analysis. A simple example is that in many web-based
applications, there is a risk of injection attacks, where an attacker fools the server into displaying results
of arbitrary SQL queries. A risk-based test might actually try to carry out an injection attack, or at least
provide evidence that such an attack is possible. For a more complex example, consider the case where
risk analysis determines that there are ambiguous requirements. In this case, testers must determine how
the ambiguous requirements might manifest themselves as vulnerabilities. The actual tests are then
aimed at probing those vulnerabilities.9

This document focuses on how risk-based and functional security testing mesh into the software
development process. Many aspects of software testing are discussed, especially in their relationship to
security testing. Nonetheless, this document is not intended as a primer on software testing per se. Test
engineers should be familiar with standard references for software testing, such as [Binder 9910], [Dustin
9911], [Fewster 9912], [Marick 9413], [Beizer 9514], [Black 0215], and [Kaner 9916].
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Business Case for Security Testing

From a technical and project management perspective, security test activities are primarily performed to
validate a system’s conformance to security requirements and to identify potential security
vulnerabilities within the system. From a business perspective, security test activities are often
conducted to reduce overall project costs, protect an organization’s reputation or brand, reduce litigation
expenses, or conform to regulatory requirements.

Identifying and addressing software security vulnerabilities prior to product deployment assists in
accomplishing these business goals. Security test activities are one method used to identify and address
security vulnerabilities. Unfortunately, in some organizations, this is the only method used to identify
security vulnerabilities.

Understanding the high-level benefits of security test activities is relatively easy to understand.
However, obtaining the real cost benefit of security test activities has historically been a difficult task.

The software testing and quality assurance community has done an excellent job of identifying the cost
benefits of conducting tests to identify software bugs early and often. If one considers that security
vulnerabilities are also a form of software bugs, the same conclusions can be made for security testing.
In parallel with the QA community, the security industry and law enforcement community have been
compiling statistics on the cost of security incidents over the last ten years. The information gathered by
both of these communities is helpful to understanding the business case for security testing.

Development Process Costs
From a pure software development perspective, security vulnerabilities identified through security
testing can be viewed in the same manner as ”traditional” software bugs that are discovered through
standard software testing processes. For the purpose of this discussion, ”traditional” software bugs are
those deficiencies identified through non-security-related test functions such as unit- and
subsystem-level tests, integration and system-level tests, or stress, performance and load tests.

It is a commonly accepted principle within the software industry that software bugs exposed earlier in
the development process are much cheaper to fix than those discovered late in the process. For example,
software bugs uncovered by a developer during unit tests generally involve only the developer and
require a relatively small amount of effort to diagnose and correct. Conversely, the same software bug
identified after the product has been deployed to the customer may involve a large number of personnel
and internal processes to diagnose and correct, and therefore may cost significantly more. Examples of
these personnel include

1. help desk personnel who take trouble calls

2. support engineers who diagnose and confirm the problem

3. developers who identify and implement code fixes

4. QA personnel that perform regression tests

5. support personnel that package and distribute patches

6. mangers that control the process

Support processes required to address and resolve the deficiency include

1. help desk support

2. defect tracking management
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3. QA test support

4. patch release management

These additional personnel and processes contribute to the significant expense of correcting software
defects after deployment. According to NIST, the relative cost of repairing software defects increases the
longer it takes to identify the bug [NIST 02a37]. For example, NIST estimates that it can cost thirty times
more to fix a coding problem that is discovered after the product has been released than it would have
cost if the problem was discovered during unit testing. Other sources, such as IBM, have placed these
costs at up to one hundred times more expensive.

Accordingly, the same benefits and cost savings associated with traditional test functions can be realized
throughout the software development life cycle with security test functions. Examples of these activities
include security tests during the unit, subsystem, and integration test cycles, in addition to security tests
during the system test cycle.

As managers are increasingly concerned with controlling and minimizing project costs, security testing
throughout the life cycle provides the setting to identify security vulnerabilities early on, when they can
be addressed and corrected in a more cost effective manner.

Non-Development Process Business Costs
In addition to the development costs outlined above, it is important to note that security vulnerabilities
can have a much greater financial impact on an organization than traditional software bugs. Financial
impact can affect both the software development organization and the end customer organization that
uses the software.

Security issues attributed to an organization can cause damage to the organization’s reputation or brand,
contribute to lost sales or lost customer goodwill, or result in liability and legal issues. As an example,
CardSystem Solutions, a leading provider of payment processing solutions, disclosed in May 2005 that
information on 40 million credit cards had been compromised. As a result of the credit card disclosure,
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Visa and American Express discontinued business with CardSystems, resulting in significant revenue
loss for the company. It is likely that the national press coverage will continue to hamper short-term
sales prospects for the company. CardSystems has also been named in a class action lawsuit.

Financial losses may also come in the form of reduced stock market capitalization. As reported in the
Journal of Computer Security [Campbell 0342], publicly traded companies that have had information
security breaches involving unauthorized access to confidential data may experience a significant
negative market reaction. This loss directly and immediately affects company shareholders.

As further evidence, the 2005 CSI/FBI Computer Crime and Security Survey [Gordon 05a43] noted that
the average financial loss of reporting organizations subjected to theft of proprietary information was
$355,552, and those reporting losses due to unauthorized access to information averaged $303,234.

These examples highlight the potential financial impact of security vulnerabilities to the overall
business. These vulnerabilities can be addressed by implementing security best practices, including
security testing, within the software development life cycle to identify and resolve security issues.
Security vulnerabilities that are identified and resolved prior to deployment reduce the overall financial
responsibilities and risks to the development and deploying organizations.

Conclusion
The overall goal of security testing is to reduce vulnerabilities within a software system. As described
above, these vulnerabilities, at a minimum, will require additional technical troubleshooting and
development effort to fix if not exposed before deployment. The cost impact of addressing these
vulnerabilities is straightforward to assess. However, in the worst case scenario, security vulnerabilities
can adversely impact a company’s reputation or brand, resulting in lost sales or litigation and severely
impacting the financial well-being of the business.

Organizations that implement security best practices throughout the software development life cycle
understand that addressing issues early can result in cost savings. Security testing is one activity that is
used to reduce these vulnerabilities and control potential future costs.

Software Security Testing

At one time, it was widely believed that security bugs in a software system were just like traditional
bugs and that traditional software assurance techniques could be equally well applied to secure software
development.

However, security-related bugs can differ from traditional bugs in a number of ways:

• Users do not normally try to intelligently search out software bugs. An enterprising user may
occasionally derive satisfaction from making software break, but if he or she succeeds it affects only
that user. On the other hand, malicious attackers do intelligently search for vulnerabilities. If they
succeed, they cause problems for other users, who may be adversely affected. Compounding the
problem, malicious hackers are known to script successful attacks and distribute them. In other
words, a single, hard-to-find vulnerability can cause problems for a large number of users, while a
hard-to-find bug causes problems for only a few users.

• Developers can (and do) learn to avoid poor programming practices that can lead to buggy code. In
contrast, the list of insecure programming practices is long and continues to grow by the year,
making it difficult for developers to keep current on the latest exploits. Since most developers are not
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currently trained in secure programming practices, security analysts carry a greater burden in
verifying that secure programming practices are adhered to.

• Security testing is often fundamentally different from traditional testing because it emphasizes what
an application should not do rather than what it should do, as pointed out in [Fink 94], where the
authors distinguish between positive requirements and negative requirements. While security testing
may sometimes test conformance to positive requirements such as ”user accounts are disabled after
three unsuccessful login attempts” or ”network traffic must be encrypted,” there is a far greater
emphasis on negative requirements in security testing. Examples of negative testing include ”outside
attackers should not be able to modify the contents of the web page” or ”unauthorized users should
not be able to access data.” This shift in emphasis from positive to negative requirements affects the
way testing is performed. The standard way to test a positive requirement is to create the conditions
in which the requirement is intended to hold true and verify that the requirement is really satisfied by
the software. On the other hand, a negative requirement may state that something should never
occur. To apply the standard testing approach to negative requirements, one would need to create
every possible set of conditions, which is infeasible.

• Many security requirements, such as ”an attacker should never be able to take control of the
application,” would be regarded as untestable in a traditional software development setting. It is
considered a legitimate practice for testers to ask that such requirements be refined or perhaps
dropped altogether. But many security requirements can be neither refined nor dropped even if they
are untestable. For example, one cannot reliably enumerate the ways in which an attacker might get
control of a software system (which would be one way to make it more testable) and obviously one
cannot drop the requirement either.

The result is that secure software development is intrinsically harder than traditional software
development, and because of this, testing also has an expanded role. Software testing also has other
strengths that can be leveraged during secure software development:

• In many software development settings, testing is the only dynamic analysis that the software is ever
subjected to. A dynamic analysis is one that involves executing the software. Some kinds of
problems are easier to detect dynamically than statically, especially problems involving pointers or
long-range data and control flow.

• Testing can help confirm that the developers did not overlook some insecure programming practices.
Static analysis is useful for this purpose too, but distinguishing true vulnerabilities from
unexploitable ones is often easier when dynamic analysis and static analysis are combined.

• A vulnerability is usually taken more seriously if there is a known exploit for it, but developing
exploits is the domain of penetration testing (see the BSI module on that topic).

• Testing can be used to help identify and mitigate risks from third-party components, where
development artifacts like source code and architecture diagrams are unavailable.

• Testing can be used to provide metrics of software insecurity and help raise the alarm when software
is seriously flawed from the security standpoint.

• Every design artifact views the software system at a certain level of abstraction. Clearly, an
architecture diagram views the software at an abstract level corresponding to the system architecture,
but even the source code is an abstract view of the software. For example, C code does not explicitly
show that the strcpy() function can cause a buffer overflow; one has to know in advance that strcpy()
is dangerous. Attackers like to find the abstractions used by developers and work their way around
them (in other words, find the developers’ implicit assumptions and see what happens when those
assumptions are made to be untrue [Hoglund 0461], [Whittaker 0262, Whittaker 0363]). No person or
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group can view a software system at all possible levels of abstraction, but testing can help by perhaps
finding (at least some) flaws that are not visible in the design artifacts.

Of course, secure programming is much more than just security testing. In fact, it is often argued that
testing is only a small part of the process (see [McGraw 04] for example). Nonetheless, testing has a role
to play, and given the fact that it is very difficult to find all security related problems in a software
system, no effective mitigation strategy should be overlooked.

Functional Testing

Functional testing is meant to test a whether a software system behaves is as it should. Usually this
means testing the system’s adherence to its functional requirements. Since requirements exist at different
levels of abstraction throughout the software development process, functional testing also takes place
throughout the test process and at different levels of abstraction. For the sake of clarity, it should be
noted that many test plans also use ”functional testing” to refer to a specific test phase. For example, it
can refer to the testing of executable files and libraries. As is often the case, there is a certain lack of
uniformity in the terminology associated with software testing.

Functional testing is a broad topic that the literature on traditional software testing covers in great detail.
In this document, we will only discuss this activity in broad strokes, while encouraging test engineers to
consult standard references, such as those listed at the end of the Introduction67, in order to get greater
detail. This document also emphasizes the aspects of functional testing that are related to software
security.

To understand the nature of functional testing, it is useful to understand the role of functional
requirements in software development. Requirements generally come from two sources: some are
defined up front, and others stem from mitigations that are defined as the result of risk analysis. A
requirement usually has the following form: ”when a specific thing happens, then the software should
respond in a certain way.” For example, a requirement might state that if the user closes an application’s
GUI window, then the application should shut down. This way of presenting requirements is convenient
for the tester, who can simply bring about the ”if” part of the requirement and then confirm that the
software behaves as it should. For example, a typical requirement may state that a user’s account is
disabled after three unsuccessful login attempts or that only certain characters should be permitted in a
URL. These requirements can be tested in traditional ways, such as attempting three unsuccessful login
attempts and verifying that the account in question was really disabled, or by supplying a URL with
illegal characters and making sure they are stripped out before processing.

The tester’s life is also simplified by the common practice of ensuring that every requirement can be
mapped to a specific software artifact meant to implement that requirement. This helps prevent chaotic
code, but it also means that the tester who is probing a specific requirement knows exactly which code
artifact to test. Generally, there is a three-way mapping between functional requirements, code artifacts,
and functional tests.

Negative requirements create a challenge for functional testing. The mapping of requirements to specific
software artifacts is problematic for a requirement such as ”no module may be susceptible to buffer
overflows,” since that requirement is not implemented in a specific place. Such requirements are
sometimes known as ”negative requirements” because they state things that the software should not do,
as opposed to what the software should do. Often, such requirements can also be expressed as risks, as in
”there is a risk of certain software modules being compromised with buffer overflow attacks.” In this
document, negative requirements will be treated separately in the section on risk-based testing.
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Although negative requirements often have a high profile in secure software development, one should
not overlook the importance of positive requirements in security testing. When risks are identified early
enough in the SDLC, there is time to include mitigations for those risks (also known as
countermeasures). Mitigations are meant to reduce the severity of the identified risks, and they lead to
positive requirements. For example, the risk of password-cracking attacks can be mitigated by disabling
an account after three unsuccessful login attempts, and the risk of SQL insertion attacks from a web
interface can be mitigated by using an input validation whitelist that does not contain characters
necessary to perform this type of attack. These mitigations also have to be tested, not only to help
confirm that they are implemented correctly, but also to help determine how well they actually mitigate
the risks they were designed for.

One other issue that deserves special emphasis is that developers might not understand how to
implement some security requirements. If a test fails, the developers might also fail to understand what
went wrong, and the resulting fix might be a kludge. This can happen with any type of requirement, but
security requirements can be a special source of problems, since most developers are not security
experts. In one case, it was found that a web application was vulnerable to a directory traversal attack,
where a URL containing the string ”..” can be used to access directories that are supposed to be
forbidden to remote clients. After the software was repaired, it was found that developers had simply
blacklisted part of the URL used in the original test. Security testers should be aware of common
misunderstandings and plan tests for them. When bugs are fixed, it should also be kept in mind that the
fix might not be subjected to the same scrutiny as features that were part of the original software design.
For example, a problem that should normally be detected in design reviews might slip through the cracks
if it appears in a bug fix. Sometimes, software that has been repaired is only retested by running the
original test suite again, but that approach works poorly for the kinds of problems just described.

It should be emphasized that functional testing should not provide a false sense of security. Testing
cannot demonstrate the absence of problems in software, it can only demonstrate (sometimes) that
problems do exist [Dijkstra 7068]. The problem is that testers can try out only a limited number of test
cases, and the software might work correctly for those cases and fail for other cases. Therefore, testing a
mitigation is not enough to guarantee that the corresponding risk has really been mitigated, and this is
especially important to keep in mind when the risk in question is a severe one.

At the start of this section, we stated that functional testing is meant to probe whether software behaves
as it should, but so far we have focused only on requirements-based testing. A number of other
techniques are summarized below, and the reader is also referred to the BSI module on white box
testing, which covers many of these test techniques in detail.

However, there is one other area of testing still to be covered in this document, namely risk-based
testing, which focuses on testing against negative requirements or, in other words, on probing
security-related risks. Whether risk-based testing should be regarded as a subset of functional testing is
largely a matter of one’s taste in terminology, but due to its significant role in secure software
development we discuss it separately in Risk-Based Testing.

Some Functional Test Techniques

Ad hoc testing (experience-based testing) and exploratory testing

Derive tests based on tester’s skill, intuition, and experience with similar programs. This is also called
”exploratory testing.” This kind of testing is only effective when done by trained or experienced testers
to flesh out special tests not captured in more formal techniques. Ad hoc testing can take advantage of
the specialized instincts of security analysts, and it also comes into play when a tester has discovered
indirect evidence of a vulnerability and decides to follow up. Penetration testing tends to have an
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exploratory flavor.

Kaner, C.; Falk, J.; & Nguyen, H. Testing Computer Software, 2nd ed., Chapter 1. New York, NY: John
Wiley & Sons, 1999.

Bach, J. Exploratory Testing and the Planning Myth. http://www.satisfice.com/articles/et_myth.htm.

Marick, B. A Survey of Exploratory Testing. http://www.testingcraft.com/exploratory.html.

Requirements-based testing

Given a set of requirements, devise tests so that each requirement has an associated test set. Trace test
cases back to requirements to ensure that all requirements are covered. In security testing it can also be
useful to build test cases around ambiguities in the requirements.

Hamlet, D. & Maybee, J. The Engineering of Software, Chapter 7. Boston, MA: Addison-Wesley, 2001.

RTCA, Inc. DO-178B, Software Considerations in Airborne Systems and Equipment Certification.
Washington, D.C.: RTCA, Inc., 1992. http://www.rtca.org.

Specification-based testing and model-based testing (API testing is a subset)

Given a specification (or even a definition of an interface), test cases can be derived automatically and
can even include an oracle. This sometimes requires a specification created in a formal language (which
is not often encountered). An alternative form is to create a program model, especially based on
interfaces, and derive tests from the interface model. Test cases can also be created by hand based on a
specification, but this is much more of an art. In security testing, it can be useful to test situations that
are not covered in the specifications.

Zhu, H.; Hall, P.; & May, J. ”Software Unit Test Coverage and Adequacy,” Section 2.2. ACM
Computing Surveys 29, 4 (December 1997): 366-427.

Robinson, H. ”Intelligent Test Automation.” Software Testing & Quality Engineering (Sept./Oct. 2000):
24-32. http://www.geocities.com/harry_robinson_testing/Intelligent_Test_Automation.

Equivalence partitioning

Divide the input domain into a collection of subsets, or ”equivalence classes,” which are deemed
equivalent according to the specification. Pick representative tests (sometimes only one) from within
each class. Can also be done with output, path, and program structure equivalence classes.

Jorgensen, P. C. Software Testing: A Craftsman’s Approach, Chapter 6. CRC Press, 1995.

Kaner, C.; Falk, J.; & Nguyen, H. Testing Computer Software, 2nd ed., Chapter 7. New York, NY: John
Wiley & Sons, 1999.

Hamlet, D. & Maybee, J. The Engineering of Software, Chapters 7 and 20. Boston, MA:
Addison-Wesley, 2001.

Meyers, G. The Art of Software Testing. New York, NY: John Wiley & Sons, 1979.

Boundary value analysis

Choose test cases on or near the boundaries of the input domain of variables, with the rationale that
many defects tend to concentrate near the extreme values of inputs. A classic example of boundary-value
analysis in security testing is to create long input strings in order to probe potential buffer overflows.
More generally, insecure behavior in boundary cases is often unforeseen by developers, who tend to
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focus on nominal situations instead.

Jorgensen, P. C. Software Testing: A Craftsman’s Approach, Chapter 5. CRC Press, 1995.

Kaner, C.; Falk, J.; & Nguyen, H. Testing Computer Software, 2nd ed., Chapter 7. New York, NY: John
Wiley & Sons, 1999.

Robustness and fault tolerance testing

A variation on boundary value analysis where test cases are chosen outside the domain in order to test
program robustness to unexpected and erroneous inputs. Also useful for probing fault tolerance and error
handling. Errors can lead to insecure conditions, such as the disclosure of sensitive information in
debugging messages or core dumps. Error handlers are also notorious for containing security bugs.

Jorgensen, P. C. Software Testing: A Craftsman’s Approach, Chapter 5. CRC Press, 1995.

Kaner, C.; Falk, J.; & Nguyen, H. Testing Computer Software, 2nd ed., Chapter 7. New York, NY: John
Wiley & Sons, 1999.

Decision table (also called logic-based testing)

Decision tables represent logical relationships between conditions (for example, inputs) and actions (for
example, outputs). Derive test cases systematically by considering every possible combination of
conditions and actions. Security testers often focus on conditions that are not covered in the
requirements or specifications.

Beizer, Boris. Software Testing Techniques, Chapter 10. New York, NY: van Nostrand Reinhold, 1990
(ISBN 0-442-20672-0).

Jorgensen, P. C. Software Testing: A Craftsman’s Approach, Chapter 7. CRC Press, 1995.

State-based testing

Model the program under test as a finite state machine, and then select tests that cover states and
transitions using diverse techniques. This is good for transaction processing, reactive, and real-time
systems. In security testing, it can often be useful to try to force transitions that do not appear in higher
level design artifacts, since vulnerabilities often appear when software enters an unexpected state.

Beizer, Boris. Software Testing Techniques, Chapter 11. New York, NY: van Nostrand Reinhold, 1990
(ISBN 0-442-20672-0).

Jorgensen, P. C. Software Testing: A Craftsman’s Approach, Chapter 4. CRC Press, 1995.

Control-flow testing

Control-flow based coverage criteria aim at covering all statements, classes, or blocks in a program (or
some specified combinations). Reduce the program to a directed graph and analyze the graph.
Decision/condition coverage is one example. The aim is to detect poor and potentially incorrect program
structures. This is often infeasible for all but trivial programs. Coverage analysis is discussed in the BSI
module on white box testing.

Beizer, Boris. Software Testing Techniques, Chapter 3. New York, NY: van Nostrand Reinhold, 1990
(ISBN 0-442-20672-0).

Jorgensen, P. C. Software Testing: A Craftsman’s Approach, Chapter 9. CRC Press, 1995.

Hamlet, D. & Maybee, J. The Engineering of Software, Chapter 20. Boston, MA: Addison-Wesley,
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Data flow-based testing

Annotate a program control flow graph with information about how variables are defined and used. Use
definition-use pairs (often called d/u testing) such that where V is a variable, d is a node where V is
defined, and u is a node where V is used and there is a path from d to u. The aim is to detect poor and
potentially incorrect program structures. Data flow testing is often used to test interfaces between
subsystems. Data-flow analysis is discussed in the BSI module on white box testing.

Beizer, Boris. Software Testing Techniques, Chapter 5. New York, NY: van Nostrand Reinhold, 1990
(ISBN 0-442-20672-0).

Hamlet, D. & Maybee, J. The Engineering of Software, Chapter 17. Boston, MA: Addison-Wesley,
2001.

Usage-based and use-case based testing

Base tests on use of the product in real operation by creating an operational profile or creating a set of
use cases. It is sometimes possible to infer future reliability from test results (given a statistically correct
operational profile). Do this by assigning inputs to a probability distribution according to their
occurrence in actual operation.

Jorgensen, P. C. Software Testing: A Craftsman’s Approach, Chapter 14. CRC Press, 1995.

Lyu, M. Handbook of Software Reliability Engineering, Chapter 5. McGraw-Hill/IEEE, 1996.
http://www.cse.cuhk.edu.hk/~lyu/book/reliability/.

Pfleeger, S. L. Software Engineering: Theory and Practice, Chapter 8. Upper Saddle River, NJ: Prentice
Hall, 1998 (ISBN 013624842X).

Cockburn, A. Usecases.org. http://www.usecases.org/.

Wiegers, K. Software Requirements. Redmond, WA: Microsoft Press, 1999.

Code-based testing (also called white box testing)

Use the control structure, the data flow structure, decision control, and modularity to design tests to
cover the code. Use coverage analysis (e.g., white box) to assess test completeness and goodness. This
technique is a superset of control flow testing and data flow testing. White box testing is covered in a
separate module of the BSI portal.

Beizer, Boris. Software Testing Techniques, Chapter 3. New York, NY: van Nostrand Reinhold, 1990
(ISBN 0-442-20672-0).

Jorgensen, P. C. Software Testing: A Craftsman’s Approach, Chapter 4. CRC Press, 1995.

Hamlet, D. & Maybee, J. The Engineering of Software, Chapter 20. Boston, MA: Addison-Wesley,
2001.

Marick, Brian. The Craft of Software Testing: Subsystems Testing Including Object-Based and
Object-Oriented Testing. Upper Saddle River, NJ: Prentice Hall PTR, 1994.

Fault-based testing

Intentionally introduce faults during testing to probe program robustness and reliability. Determining
which kind of faults to introduce and how to observe their effects is a challenge. Experience with this
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method is necessary for it to be useful. Code-based fault injection is discussed in the BSI module on
white box testing.

Voas, Jeffrey M. & McGraw, Gary. Software Fault Injection: Inoculating Programs Against Errors,
47-48. New York, NY: John Wiley & Sons, 1998.

Protocol conformance testing

Use a program’s communication protocol as a direct basis for testing the program. This is useful when a
program is supposed to accept a protocol. In combination with boundary-value testing and
equivalence-based testing, this method is useful for web-based programs and other Internet-based code.
Protocol-based testing is especially important for security testing in web-based applications, since the
easiest way for remote attackers to access such applications is through web protocols (or their buggy
implementations, as the case may be). Protocol-based testing is discussed in the BSI portal on black box
tools.

Sun, Xiao; Feng, Chao; Shen, Yinan; & Lombardi, Fabrizio. Protocol Conformance Testing Using
Unique Input/Output Sequences. Hackensack, NJ: World Scientific Publishing Co., 1997.
http://www.wspc.com.sg/books/engineering/3259.html.

Load and performance testing

Testing specifically aimed at verifying that the subsystem meets specified performance requirements
(e.g., capacity and response time). Load and stress testing exercise a system to the maximum design load
and beyond it. Stressful conditions can expose vulnerabilities that are otherwise hard to see, and
vulnerabilities can also be caused by the mechanisms that software uses to try to deal with extreme
environments. Developers are often focused on graceful degradation when they create these
mechanisms, and they overlook security.

Perry, W. Effective Methods for Software Testing, Chapter 17, New York, NY: John Wiley & Sons,
1995.

Pfleeger, S. Software Engineering Theory and Practice, Chapter 8, Upper Saddle River, NJ: Prentice
Hall PTR, 1998.

Security testing

The use of a variety of testing techniques specifically to probe security. There are two major aspects of
security testing: testing security functionality to ensure that it works and testing the subsystem in light of
malicious attack. Security testing is motivated by probing undocumented assumptions and areas of
particular complexity to determine how a program can be broken.

Howard, Michael & LeBlanc, David C. Writing Secure Code, 2nd ed. Redmond, WA: Microsoft Press,
2002, ISBN 0735617228.

Viega, John & McGraw, Gary. Building Secure Software: How to Avoid Security Problems the Right
Way. Boston, MA: Addison-Wesley Professional, 2001 (ISBN 020172152X).

Risk-Based Testing

Recall that in security testing, there is an increased emphasis on negative requirements, which state what
a software system should not do. Tests can be developed in a number of ways for negative requirements.
The tests should be derived from a risk analysis, which should encompass not only the high-level risks
identified during the design process but also low-level risks derived from the software itself.
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When negative requirements are tested, security testers typically look for common mistakes and test
suspected weaknesses in the application. The emphasis is often on finding vulnerabilities, often by
executing abuse and misuse tests that attempt to exploit the weaknesses in the application. In addition to
demonstrating the presence of vulnerabilities, security tests can also assist in uncovering symptoms that
suggest vulnerabilities might exist.

It was stated earlier that requirements can be expected to contain mitigations for many risks. Mitigations
generally result in positive requirements, but the fact that some risk has a mitigation does not imply that
it should be ignored during risk-based testing. Even if a mitigation is correctly implemented, there is still
a need to ask whether it really does mitigate the risk it is intended for. Each mitigation generates a
positive requirement—the correct implementation of the mitigation strategy—but it also generates a
negative requirement stating that the mitigation must not be circumventable. To put it another way, the
mitigation might not be sufficient for avoiding the underlying risk, and this possibility constitutes a risk
in and of itself.

Unfortunately, the process of deriving tests from risks is somewhat of an art, and depends a great deal on
the skills and security knowledge of the test engineer. There are many automated tools that can be
helpful aids during risk-based testing [Black Box Testing163], but these tools can perform only simple
tasks, while the hard tasks are still the responsibility of the test engineer. The process of test creation
from negative requirements is discussed in greater detail below.

Defining Tests for Negative Requirements
As a basis for defining test conditions, past experience comes into play in two ways. First, a mature test
organization will have a set of test templates that outline the test techniques to be used for testing against
specific risks and requirements in specific types of software modules. Test templates are usually created
during testing projects, and they accumulate over time to record the organization’s past experience. This
document does not provide test templates, but the attack scenarios of [Hoglund 04167], [Whittaker 02168],
and [Whittaker 03169] can be used for this purpose.

Another way to derive test scenarios from past experience is to use incident reports. Incident reports can
simply be bug reports, but in the context of security testing they can also be forensic descriptions of
successful hacking activity. Furthermore, vulnerability reports are often followed by proofs of concept to
demonstrate how the reported vulnerability is actually exploitable. Sometimes these proofs of concept
are actual exploits, and sometimes they simply show that a vulnerability is likely to be exploitable. For
example, if a buffer overflow can be made to cause a crash, then it can usually also be exploited.
Sometimes it is enough simply to find evidence of vulnerabilities as opposed to actual exploits, so these
proofs of concept can be used as the basis of test scenarios. When devising risk-based tests, it can be
useful to consult IT security personnel, since their jobs involve keeping up to date on vulnerabilities,
incident reports, and security threats.

Finally, threat modeling can be leveraged to help create risk-based tests. For example, if inexperienced
hackers (e.g., script kiddies) are expected to be a major threat, then it might be appropriate to probe
software security with automated tools; hackers often use the same tools. Some of these tools are
described in the BSI module on black box testing tools. Threat modeling should be carried out in any
event as part of a secure software development process, and it is described in its own BSI module.

Below, we discuss some thought processes that may be helpful in creating new tests for negative
requirements.
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Understanding a Software Component and Its Environment

When testing against negative requirements, one of the test engineer’s first tasks is to understand the
software and its environment. It is important to understand the software itself, but it is also important to
understand the environment, and in fact this issue may deserve even more emphasis because not all
interactions with the environment are obvious. A software module may interact with the user, the file
system, and the system memory in fairly obvious ways, but behind the scenes many more interactions
may be taking place without the user’s knowledge. This understanding can be aided by a controlled
environment like the one described above, where software behavior can be observed in detail.

Two types of environmental interactions have to be considered, namely, corruption of the software
module by the environment and corruption of the environment by the software module. Regarding the
environment as a potential threat is part of defense in depth, even when considering parts of the
environment that have their own protection mechanisms. As for corruption of the environment, recall
that there may not be enough time to test every component of the software system, and that the
components not currently under test are part of the environment. If the component under test can corrupt
the system—perhaps in cooperation with other components that happen to be in an unexpected
state—this constitutes a direct threat to the system just as if the component itself were vulnerable.

Some environmental interactions to be considered are

• user interactions

• interactions with the file system

• interactions with memory

• interactions with the operating system via system calls

• interactions with other components of the same software system

• interactions with dynamically linked libraries

• interaction with other software via APIs

• interaction with other software via interprocess communication

• interactions with global data such as environment variables and the registry

• interactions with the network

• interactions with physical devices

• dependencies on the initial environment

The biggest challenge is to avoid overlooking an interaction altogether; that is, remembering to even ask
whether the software can or should trust the entity that it is interacting with. Still, it is appropriate to
prioritize these interactions according to how realistic it is to view them as part of an attack. For
example, the operating system is normally in charge of protecting real memory, and if it fails to do so
this is regarded as a security bug, so the main goal is to check for ways that the attacker might corrupt
real memory rather than assuming it to be corrupted. Similarly, the tester might well assign low priority
to attacks where the attacker would have to break a properly validated encryption scheme.

Understanding the Assumptions of the Developers

Attackers attack the assumptions of developers. That is, developers have a certain mental view of the
software, and that mental view does not cover every possible thing that the software can do. This state of
affairs is inevitable because software is too complex for a human to carry a complete, detailed mental
picture of it. Nonetheless, the tester’s job is to find the developer’s assumptions, violate those
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assumptions, and thereby try to uncover vulnerabilities. Often, developers’ assumptions come in the
form of abstractions that can be anything from a design diagram to a datatype to a stereotypical view of
how the software will be used. An abstraction can predict and explain certain software behaviors, but by
nature there are other things that it does not predict or explain. Part of the tester’s job is to break the
abstraction by forcing behaviors that the abstraction does not cover.

Any mental picture is an abstraction; by nature it hides some details in order to provide a coherent big
picture. The designers and developers also had certain abstract views of the software in mind, as did
previous testers, even though those abstractions might not always have been selected with much
conscious thought. For example, an architecture diagram shows the software at one level of abstraction,
the high-level source code shows it at another, and the machine code at still another. Interactions
between the software and the environment are represented as abstractions too.

A program written in a high-level language is an abstract representation of the actual software behavior,
but if there is a compiler bug it may not reflect the software’s true behavior. In C/C++, the notorious
string buffer is an abstraction that fails to reveal how the characters in a string can affect the program
counter. A high-level architecture diagram is a different kind of abstraction that does not show how an
attacker might interfere with communication between modules. Therefore, developers whose abstract
view of a system is based on the architecture diagram often fail to foresee such attacks.

This relates to the process of test creation in another way: the process of devising software tests is driven
by the tester’s own mental picture of how the software system works. For example, [Whittaker 02192]
suggests (in the context of ordinary testing) that testers adopt an abstraction where the software has four
classes of ”users,” namely, the file system, the kernel, human users, and other applications. In this
abstraction, program inputs and outputs are mediated by the kernel. Within this view, a tester’s mental
picture of program behavior depends on whether the software is viewed as high-level code, object code,
machine code, or perhaps even microcode. At a completely different level of abstraction we might say
that the software does not receive input at all but rather supplies instructions to a microprocessor, which
in turn receives input from other hardware.

In security testing, there is no ”correct” level of abstraction because any manageable abstraction hides
something, and whatever is hidden might turn out to be exploitable by an attacker. Instead of trying to
find one mental abstraction that is somehow better than the others, the goal is simply to avoid being
dogmatic about this issue and instead try to find behaviors and interactions that were previously
overlooked.

Building a Fault Model

A fault model consists of hypotheses about what might go wrong with a piece of software [Leveson
95195]. In other words, the tester must ask what kinds of vulnerabilities can exist in a system of this type
and what kinds of problems are likely to have been overlooked by the developers.

Often the most important classes of vulnerabilities to consider may be the most common ones, that is,
the vulnerabilities targeted by security scanners, reported in public forums, and so on. These include
buffer overflow vulnerabilities, format string vulnerabilities, cross-site scripting vulnerabilities, and so
on. These kinds of vulnerabilities are undesirable in almost any setting. IT security personnel can also be
a useful resource for keeping track of current vulnerabilities.

Application-specific security requirements lead to a second class of potential vulnerabilities, where an
attacker has the ability to circumvent or otherwise undermine application-specific security. The fact that
these vulnerabilities are not common to a large class of applications makes it more difficult to
hypothesize about specific faults, since there is less experience to draw on both in the public domain and
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(most likely) in the tester’s own body of past experience. Of course, it is extremely valuable if the tester
can find past work on similar systems, and this potential avenue should not be ignored, but it is more
predictable to start with the risk analysis. Significant portions of the risk analysis might already be based
on examination of the software—the analysis may document potential bugs—so it may already
constitute a significant part of the fault model.

Finally, many traditional software bugs can also have security implications. Buggy behavior is almost by
definition unforeseen behavior, and as such presents an attacker with the opportunity for a potential
exploit. Indeed, many well-known vulnerabilities, such as buffer overflow, format-string, and
double-free vulnerabilities, could cause a software crash if they were triggered accidentally rather than
being exploited. Crashing software can also expose confidential information in the form of diagnostics
or data dumps. Even if the software does not crash as the result of a bug, its internal state can become
corrupted and lead to unexpected behavior at a later time. Finally, error handlers themselves are a
frequent target of malicious attacks. Attackers probing a new application often start by trying to crash it
themselves. For these reasons, traditional software faults have to be considered during security testing as
well.

One important difference between security testing and other testing activities is that the security tester is
emulating an intelligent attacker. This has several implications. Most importantly, an adversary might do
things that no ordinary user would do, such as entering a thousand-character surname or repeatedly
trying to corrupt a temporary file. Security testers must consider actions that are far outside the range of
normal activity and might not even be regarded as legitimate tests under other circumstances. Secondly,
an attacker will go straight for the program’s weak spots, so the tester must think like the attacker and
find the weak spots first. Finding ninety percent of an application’s vulnerabilities does not make the
application less vulnerable; it only reduces the cost of future fixes and increases the odds of finding the
remaining problems before attackers do.

Needless to say, testers must also be aware of other standard attacks such as buffer overflows and
directory-traversal attacks. Even though commercial software is increasingly immune to such attacks,
this immunity stems largely from increased caution on the part of development organizations. The
security tester shares responsibility for sustaining this state of affairs.

Other vulnerabilities may be no less obvious even though they are specific to a given application. For
example, a developer may simply trust input from a given source, without having seriously considered
the possibility that the input might be corrupted by an attacker. Applications might also write
information that is trusted elsewhere without considering whether the attacker can influence what gets
written.

Security Testing in the Software Life Cycle

Activities related to testing take place throughout the software life cycle. Preparatory activities,
especially test planning, take place even before there are any artifacts to test.

At a high level, it is useful to think of software testing as being embodied by the test plan, since it
describes the entire test process. Like risk analysis [Risk Management199], test planning is holistic in that
it takes place throughout the software development process, and fractal in that similar activities take
place at different levels of abstraction.

Figure 1. A simplified diagram showing the relationship between risk analysis and test planning

Risk-Based and Functional Security Testing 15
ID: 255 | ######: 9 | ####: 07.03.06 8:29:54

daisy:68


206. #refs

Test planning—and hence testing—is intrinsically related to risk analysis. Risk analysis also goes on
throughout the development process, and it leads not only to the identification of risks but also to the
definition of mitigations for those risks. It is often a good idea to devise tests that probe specific risks
identified during risk analysis; this leads to risk-based testing. On the other hand, it is also necessary to
devise tests for mitigations. These are usually functional tests, and they help determine whether the
mitigations have been implemented correctly or implemented at all. Since risk analysis is an ongoing
and fractal process throughout software development, new information is always becoming available for
the test plan, and test planning becomes an ongoing process as well.

The Start of the Software Life cycle

Usually, the first stage in the software life cycle is when an organization determines the need for a
software product. Sometimes [Grance 04206] this is called the initiation phase of the software life cycle.
In a sense, this phase defines what the software product is going to be.

Preparations for security testing can start even before the planned software system has definite
requirements and before a risk analysis has begun. For example, past experience with similar systems
can provide a wealth of information about how attackers have typically tried to subvert similar systems
in the past.

More generally, the initiation phase makes it possible to start a preliminary risk analysis, asking what
environment the software will be subjected to, what its security needs are, and what impact a breach of
security might have. This information provides an early focus for the process of test planning. If risk
analysis starts early, it will also be possible to take a security-oriented approach when defining
requirements.

Security Testing and the Requirements and Design Phases

The process of software development starts by gathering requirements and developing use cases. In this
phase, test planning focuses on outlining how each requirement will be tested. Some requirements may
appear to be untestable, and if test planning is already underway, then those requirements can be
identified and possibly revised to make them testable.

It is important to remember that test planning involves more than just laying out a series of tests. For
example, the test plan must also encompass test management and test automation, map out the various
phases of the test process including entry and exit criteria, and provide an estimate of the resources
needed for each activity (these aspects of test planning will be discussed in greater detail below). A good
test process requires many preliminary activities before testing can begin, and some of those activities
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can take time and/or be subject to delays. Mapping out the elements of the test plan should begin in the
requirements phase of the development life cycle in order to avoid surprises later on.

It is also useful for a more detailed risk analysis to begin during the requirements phase. Testing is
driven by both risks and requirements, and risks are especially important to consider in security testing.
While traditional non-security related risks are linked to what can go wrong if a requirement is not
satisfied, security analysis often uncovers severe security risks that were not anticipated in the
requirements process. In fact, a security risk analysis is an integral part of secure software development,
and it should help drive requirements derivation and system design as well as in security testing.

The risks identified during this phase may lead to additional requirements that call for features to
mitigate those risks. Mitigations are solutions that are developed to address a particular security risk.
The software development process can be expected to go more smoothly if mitigations are defined early
in the life cycle, when they can be more easily implemented.

The testing process is based on developing test cases for mitigations as well as risks and requirements. If
mitigations are planned for a particular risk, then security testing focuses on those mitigations as well as
the underlying risk itself. If there is time pressure, it is often a legitimate strategy to spend less time
testing against a risk that has a mitigation, on the assumption that a mitigated risk is less severe. For
example, suppose the application being developed is a web server, and it is determined that there is a
risk of injection attacks. Injection attacks involve the insertion of special characters into URLs, so the
usual mitigation for this risk is to preprocess each URL to ensure that it only contains characters from a
certain ’legal’ character set. That requirement can be tested by verifying that the offending characters
really are being rejected. Ultimately, the software design may call for a specific module that performs
the necessary preprocessing work, and this makes the tester’s task simpler because the necessary tests
might only have to be conducted on that particular module.

The example above illustrates how mitigations can turn a negative requirement into a positive
requirement. The negative requirement is ”the web server should not be susceptible to injection attacks”
and the positive one is ”only legal characters should be permitted in a URL,” where the definition of
’legal’ is also part of the requirement. It is often the case that positive requirements are easier to test than
negative ones. Of course, mitigations should not lead to a false sense of security; after all, the system
might be susceptible to injection from other vectors than URLs, or else a software flaw might make it
possible to bypass the preprocessing module. In other words, there might still be negative requirements
that have to be tested. However, the presence of the mitigation lets testers spend less time trying out
obvious injection attacks—only a few may be needed to confirm that the mitigation was implemented
correctly—and therefore the testers can spend more time looking for more subtle injection
vulnerabilities. The presence of the mitigation changes what has to be tested (and in most cases it also
creates greater confidence in the final product).

Security Testing in the Test/Coding Phase

Functional security testing generally begins as soon as there is software available to test. A test plan
should therefore be in place at the start of the coding phase and the necessary infrastructure and
personnel should be allocated before testing starts.

Software is tested at many levels in a typical development process, though the actual test activities may
vary from project to project and from organization to organization. For example, the first test stage often
focuses on individual functions, methods, or classes and is known as unit testing. Subsequently, there
might be a stage for testing modules that represent individual libraries or individual executables, and
these might be tested for their adherence to the requirements as well as for correct integration with one
another. The next stage might be to test small subsystems containing several executable modules and/or
libraries, again checking adherence to requirements and integration. Eventually the entire system is
ready to be tested as a whole, and it too may be tested against the requirements as well as being tested
for proper integration. The complete system may also go through a number of subsequent test stages,
including tests for usability, tests in the operational environment, and stress testing. The above is not
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meant to be a description of all test processes, much less a prescription for how to test; it is simply
meant to give the reader a feeling for what a test process might consist of.

This document does not attempt to catalog every possible testing activity. Instead, it will discuss several
broader activities that are common to most test processes, some of which are repeated at different times
for components at different levels of complexity. We will discuss the role of security testing in each of
these activities. The activities discussed below are

• unit testing, where individual classes, methods, functions, or other relatively small components are
tested

• testing libraries and executable files

• functional testing, where software is tested for adherence to requirements

• integration testing, whose goal is to test whether software components work together as they should

• system testing, where the entire system is under test

Unit Testing

Unit testing is usually the first stage of testing that a software artifact goes through. There is no fixed
definition of what a ”unit” is for the purposes of unit testing, but usually the term connotes individual
functions, methods, classes, or stubs. Since unit testing generally involves software artifacts that cannot
be executed by themselves, it usually requires test drivers. Unit testing is by nature functional testing,
since there is nothing to integrate yet. It is listed separately here because it differs in other fundamental
ways from later test activities.

During unit testing, the emphasis is usually on positive requirements. Positive requirements state what
software should do as opposed to saying what it should not do. The unit under test is usually there to
implement one or more requirements, and the goal is to confirm that it really does implement those
requirements.

Generally, unit testing is integrated into the development setting. The responsibility for unit testing often
falls on the shoulders of those who are most capable of writing the test drivers, namely, the developers
themselves. In some cases there are also dedicated testers who interact with individual developers and
test the artifacts of those developers.

This integration of unit testing and software development is not only motivated by the need for test
drivers, it also makes the test process more efficient. Later stages of testing might make use of limited
resources such as specialized tools and a customized test environment. It is not efficient to use these
resources for finding bugs that are immediately obvious once the software is executed, especially if
those bugs prevent further testing. This says nothing of the time that is lost by sending buggy software
back and forth between the test and development environments countless times in order to fix simple and
obvious bugs.

In spite of being the responsibility of the developers, a discussion of which security principals must be
included in unit tests should be included in the test plan. This helps ensure that developers know what
they must test, that testers know what they should expect from the developers, and that the developers
have the resources they need to do that part of their job.

When planning unit tests for security, care should be taken not to underestimate the possible security
threats to components deep inside an application. It must be kept in mind that the attacker's view of the
software environment may be quite different from that of the ordinary user. In other words, the attacker
might be able to get at the software in ways that an ordinary user might not. For example, if a component
reads data from a file, it might be appropriate for that component to validate that data on the assumption
that an attacker might have corrupted it. If a component makes assumptions about inputs provided by a
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user—even when those inputs are being checked elsewhere—it may be appropriate to validate the
assumptions in the component itself, because these assumptions are best understood by the component’s
developers. Checking such assumptions locally also simplifies later maintenance in case those
assumptions change.

When evaluating potential threats to a software component, one should also keep in mind that many
attacks have two stages: one stage where a remote attacker gains initial access to the machine, and one
stage where the attacker gains control of the machine after gaining access. For example, an attacker who
subverts a web server will initially have only the privileges of that web server, but the attacker can now
use a number of local attack strategies such as corrupting system resources and running privileged
programs in corrupt environments. Therefore, defense in depth demands that local threats be addressed
on systems that are assumed not to have malicious users, and even on machines that supposedly have no
human users at all. Here again, it is appropriate to ask what assumptions a component makes about its
environment and whether those assumptions are being checked. Attack trees [Schneier 00b232] are a
common method used to identify and model security threats that require multiple stages to execute.

Testing Libraries and Executable Files

In many development projects, unit testing is closely followed by a test effort that focuses on libraries
and executable files.

Usually test engineers, rather than software developers, perform testing at this level. A greater level of
testing expertise is needed, and this is particularly true of security testing because the testers need to be
up to date on the latest vulnerabilities and exploits. More generally, security testing is a specialized
talent, and it may be too expensive to hire full-time software developers that have this talent in addition
to being skilled at development. The test environment can also be complex, encompassing databases,
stubs for components that are not yet written, and complex test drivers used to set up and tear down
individual test cases. In security testing, there may also be a need for specialized technology that crafts
customized network traffic, simulates fault and stress conditions, allows observation of anomalous
program behavior, and so on. Aside from the fact that this technology would be expensive to replicate
throughout the development environment, building and using it may also require the specialized
expertise of a test engineer.

It is useful during functional testing to carry out code coverage analysis using a code coverage tool. This
helps in isolating program parts not executed by functional testing. These program parts may include
functions, statements, branches, conditions, etc. Such an analysis helps to

• focus and guide testing procedures

• assess thoroughness of testing

• identify code not executed by tests

• check adequacy of regression test suites

• keep in sync with code changes

Coverage analysis can be especially important in security testing. Since a determined attacker will probe
the software system thoroughly, security testers must do so as well. Error handling routines are
notoriously difficult to cover during testing, and they are also notorious for introducing vulnerabilities.
Good coding practices can help reduce the risks posed by error handlers, but it may still be useful to
have testware that simulates error conditions during testing in order to exercise error handlers in a
dynamic environment.

Libraries also need special attention in security testing. Components found in a library might eventually
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be reused in ways that are not evident in the current system design. Libraries should be tested with this
in mind: just because a library function is protected by other components in the current design does not
mean that it will always be protected in the future. For example, a buffer overflow in a particular library
function may seem to pose little risk because attackers cannot control any of the data processed by that
function, but in the future the function might be reused in a way that makes it accessible to outside
attackers.

Furthermore, libraries may be reused in future software development projects, even if this was not
planned during the design of the current system. This creates additional problems. First, the persons who
developed the library code might not be available later, and the code may not be well understood
anymore. This will make security testing harder when the library is reused, so initial testing should be
thorough. Secondly, vulnerabilities in the library will have a greater negative impact if the library is
reused in many systems. Finally, if the library is used widely, malicious hackers might become familiar
with its vulnerabilities and have exploits already at hand. This makes it especially important to audit and
test library functions early on. Perhaps the most notorious example of a vulnerable library function is the
strcpy()function in the standard C library, which is susceptible to buffer overflows. For many years, calls
to strcpy() and similarly vulnerable functions were one of the chief causes of software vulnerabilities in
deployed software. By the time strcpy()’s vulnerability was discovered, the function was in such
widespread use that removing it from the standard C library would have been infeasible. The story of
strcpy() contains a moral about the value of catching vulnerabilities as soon as possible and the expense
of trying to address vulnerabilities late in the life cycle. (On the other hand, it is hard to imagine how the
authors of strcpy() could have foreseen these problems in the 1960s, so the there is also a moral about
the limitations of secure software engineering in the face of unknown classes of vulnerabilities.)

Integration Testing

Integration testing focuses on a collection of subsystems, which may contain many executable
components. There are numerous software bugs that appear only because of the way components
interact, and this is true for security bugs as well as traditional ones.

Integration errors are often the result of one subsystem making unjustified assumptions about other
subsystems. A simple example of an integration error occurs when library functions are called with
arguments that have the wrong data type. In C, for example, there need not be a compiler warning if an
integer value is passed where an unsigned integer value is expected, but doing so can change a negative
number to a large positive number. One way that this can lead to a vulnerability is if the variable in
question is used as a buffer length; it can circumvent whatever bounds checking was done by the calling
function. An integration error can also occur if the caller and the callee both assume that the other
function was responsible for bounds checking and neither one actually does the check.

In fact, the failure to properly check input values is one of the most frequent sources of software
vulnerabilities. In turn, integration errors are one of the most frequent sources of unchecked input values,
because each component might assume that the inputs are being checked elsewhere. (It was mentioned
earlier that components should validate their own data, but in many systems this is an ideal that has to be
sacrificed for reasons of efficiency.) During security testing, it is especially important to determine what
data can and cannot be influenced by a potential attacker.

Error handlers were already mentioned above in the section on functional testing, but they can also lead
to integration errors because of unusual control and data-flow patterns during error handling. Error
handling is one more form of component interaction, and it must be addressed during integration testing.

System Testing

In the late stages of a software development process, the entire system is available for testing. This
testing stage can (and should) involve integration and functional tests, but it is treated separately here
because the complete system is the artifact that will actually be attacked. Furthermore, certain activities
relevant to software security, such as stress testing, are often carried out at the system level. Penetration
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testing is also carried out at the system level, and when a vulnerability is found in this way there is
tangible proof that the vulnerability is real; a vulnerability that can be exploited during system testing
will be exploitable by attackers. Under resource constraints, these are the most important vulnerabilities
to fix, and they are also the ones that will be taken most seriously by developers.

It was stated above that the complete system is the artifact that will be attacked. This is true even though
an attacker can usually execute individual components once he or she gains access to a local machine. In
order to gain that access it is often necessary to first subvert an outward-facing software system. The
most common example is a system that provides some network service and is therefore accessible to the
world at large, but there are also other cases where an attacker is forced to deal with an entire software
system. For example, an attacker in one protection domain may be attacking another, or an attacker who
controls one layer of an operating system might be attacking another layer. While defense in depth
demands that individual executable programs be secure, it also demands rigorous security at the system
level to help prevent attackers from getting a toehold in the first place.

Often, penetration testing is associated with system-level testing. Penetration testing makes the most
sense here, because any vulnerabilities it uncovers will be real vulnerabilities. In contrast, earlier test
stages take place in an artificial environment that might not represent the true environment closely
enough. Furthermore, some system components might be represented by stubs in earlier test stages. The
case study in the Case Study254 section describes a system where poor version control caused a fault to
remain hidden until system testing. The moral of these examples is the importance of testing the actual
artifact that will be deployed, especially in activities like penetration testing, where the goal is to
uncover real vulnerabilities.

Stress testing is also relevant to security because software performs differently when under stress. For
example, when one component is disabled due to insufficient resources, other components may
compensate in insecure ways. An executable that crashes altogether may leave sensitive information in
places that are accessible to attackers. Attackers might be able to spoof subsystems that are slow or
disabled, and race conditions might become easier to exploit. Stress testing may also exercise error
handlers, whose importance was already emphasized above. Security testers should also look for unusual
behavior during stress testing that might signal the presence of unsuspected vulnerabilities. Stress testing
is a time when components are likely to have to deal with unexpected situations, and many
vulnerabilities come about because of conditions that developers were not expecting.

The importance of functional and integration testing at the system level should not be overlooked.
During earlier test phases, some components are likely to have been replaced by stubs, and system
testing is usually the first time that the system actually does the same things it will do after deployment.

The Operational Phase

The operational phase of the software life cycle begins when the software is deployed. Often, the
software is no longer in the hands of the developing organization or the original testers.

Traditionally, beta testing is associated with the early operational phase, and beta testing has its
counterpart in the security arena, since white-hat hackers may examine the software in search of
vulnerabilities.

However, beta testing is not the last word because the software system may become vulnerable after
deployment. This can be caused by configuration errors or unforeseen factors in the operational
environment. Vulnerabilities can also creep into an existing system when individual components are
updated. Assumptions that were true about those components during development may no longer be true
after new versions are deployed. It may also be that only some components are updated while others are
not, creating a mélange of software versions whose exact composition cannot be foreseen in any
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development setting. This makes the vulnerabilities of the composite system unforeseeable as well.
Some subsystems might also be customized on site, making it harder still to maintain a big picture of the
software system and its potential vulnerabilities

The risk profile of the system might also change over time, and this creates a need for continuing
security audits on systems deployed in the field. This can happen when the system is used in ways that
were not foreseen during development, or when the relative importance of different assets grows or
diminishes. For example, an organization might unknowingly protect critical information with
encryption methods that are no longer considered secure.

The risk profile can also change when new vulnerabilities are uncovered in existing software versions. In
fact, there may be entirely new classes of vulnerabilities that were not foreseen during development. For
example, a format string vulnerability exists when an attacker can control the first argument of a C/C++
print statement (these vulnerabilities are discussed elsewhere in the BSI portal). Before they were
recognized as vulnerabilities, it is difficult to imagine how any development effort, no matter how
meticulous, could have systematically avoided them. The danger of a simple statement like
print(working_directory) was simply not recognized. In general, malicious attackers know about
vulnerabilities soon after they are discovered. A responsible development organization will release a
patch, but software users might not apply the patch. This creates a drastic shift in the system’s risk
profile.

A related issue is that encryption techniques used by a software system can become obsolete, either
because increasing computational power makes it possible to crack encryption keys by brute force or
because researchers have discovered ways of breaking encryption schemes previously thought to be
secure.

These issues create the need for security audits in deployed systems. Ideally, the audits should be
performed by security professionals, and many test activities, especially those associated with system
testing, can be useful here too.

Unfortunately, security audits often consist of checklists and scans by automated tools. This makes it
necessary to leave the discussion of security testing in the software life cycle on a somewhat negative
note. Too often, organizations place too much faith in weak, automated testing tools as the sole means of
conducting security audits. Such testing tools usually run a series of canned tests simulating known
attacks, although to be fair they also check software versions and run other checks that do not directly
involve penetration attempts. These tools have their place, but they should not be the sole means of
maintaining security in a deployed system.

Security Testing Activities

This section discusses several activities associated with software testing, emphasizing the role of
security. It is not intended as a specification for a test process, but it highlights several parts of the
process that are especially relevant to security testing.

Risk Analysis

The main ingredient of a secure software development process is risk analysis. Risk analysis serves two
main purposes in testing: it forms the basis for risk-based testing, which was discussed in the Risk-Based
Testing268 section, and it also forms the basis for test prioritization.

The need for test prioritization arises because there is rarely enough time to test as thoroughly as the
tester would like, so tests have to be prioritized with the expectation that tests with lower priority may
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not be executed at all. Risk analysis can be used to rank test activities, giving priority to tests that
address the more important risks.

The technical risks identified in the risk analysis should identify threats and vulnerabilities to the system
to guide testing effort. The risks identified should be used to

• develop an overall test strategy, which includes defining scope, selecting applicable testing
techniques, defining acceptable test coverage metrics, defining the test environment, etc.

• develop particular tests based on threats, vulnerabilities, and assumptions uncovered by the analysis.
For example, tests could be developed to validate specific design assumptions or to validate controls
(or safeguards) put in place to mitigate certain risks.

• increase test coverage and test focus in risky areas identified by the analysis, specifically vulnerable
portions of the software. For example, a specific component or functionality may be more exposed to
untrusted inputs, or the component may be highly complex, warranting extra attention.

• select test data inputs based on threats and usage profiling created by risk analysis. For example,
analysis could reveal that the system may be vulnerable to a privilege escalation problem.

Risk analysis is discussed elsewhere in the BSI portal, but it is mentioned here because it is an important
prerequisite for the other activities discussed in this section.

Creating a Test Plan

The main purpose of a test plan is to organize the security testing process. It outlines which components
of the software system are to be tested and what test procedure is to be used on each one. A test plan
contains more than a simple list of tests that are to be carried out. In general, the test plan should
incorporate both a high-level outline of which artifacts are to be tested and what methodologies are to be
used, and it should also include a general description of the tests themselves, including prerequisites,
setup, execution, and a description of what to look for in the test results. The high-level outline is useful
for administration, planning, and reporting, while the more detailed descriptions are meant to make the
test process go smoothly. Often, the test plan has to account for the fact that time and budget constraints
prohibit testing every component of a software system, and a risk analysis is one way of prioritizing the
tests.

While not all testers like using test plans, test plans provide a number of benefits.

• They provide a written record of what is to be done.

• They allow project stakeholders to sign off on the intended testing effort. This helps ensure that the
stakeholders agree with the elements of the plan and will support the test effort.

• Test plans provide a way to measure progress. This allows testers to determine whether they are on
schedule, and also provides a concise way to report progress to the stakeholders.

• Due to time and budget constraints, it is often impossible to test all components of a software
system. A test plan allows the analyst to succinctly record what the testing priorities are.

The reason that some testers dislike test plans is that they can constrain testers and prevent them from
following up on observations and hunches that could lead to unexpected discoveries. This can be
especially true in security testing, where the focus on negative requirements makes it desirable to
investigate unexpected anomalies found during testing. However, a testing effort involving more than
one person can easily deteriorate without a written plan. A good solution is to let testers deviate from the
specific tests outlined in the test plan, but simply require that these changes be documented.

The information needed for test planning starts becoming available as soon as the software life cycle
starts, but information continues arriving until the moment that the actual software artifact is ready for
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testing. In fact, the test process itself can generate information useful in the planning of further tests.

Therefore, test planning is an ongoing process. At its inception, a test plan is only a general outline of
the intended test process, but more and more of the details are fleshed out as additional information
becomes available.

For larger projects, the test plan is typically broken down into test cycles. This occurs for two reasons:
first, the developing organization may modify software after problems are uncovered and then send the
software back to be retested. Secondly, it is often inefficient for testing to begin only when development
ends, so one component may be in testing while other components of the same system are still under
development. In the first case, test cycles are created by the need to retest software that was already
tested once before; in the second case, test cycles arise because the nature of the development effort
implies that different modules will be tested at different times.

In creating the test plan, inter-component dependencies must be taken into account so that the potential
need for retesting is minimized. In an ideal world, the testing organization would be able to actually
specify the order in which components are tested, ensuring that each module is tested before other
modules that might be dependent on it. In practice this is not so easy because the developing
organization might be reluctant to change the planned sequence in which the components are to be
developed. It may be that the testing organization can do no more than take these dependencies into
account when creating the test plan.

Usually, a test plan also includes validation of the test environment and the test data. This is necessary
because, for example, the test environment may fail to reflect the intended operational environment and
crash the software, or the test data may be generated automatically and have an incorrect format.

Within each cycle, the test plan should map out the test cases that should be created during the test
execution process. A test case typically includes information on the preconditions and postconditions of
the test, information on how the test will be set up and how it will be torn down, and information about
how the test results will be evaluated. The test case also defines a test condition, which is the actual state
of affairs that is going to be tested; e.g., the tester creates the test condition in order to see how the
software responds. The process of actually devising test conditions is a challenging one for security
testing, and discussed in a separate section below.

The goal of test planning is to make the test process itself as automatic as possible, which not only
makes the process go more smoothly but also makes it repeatable. Therefore the test plan should provide
as much guidance as possible. In addition to the items already discussed, the test plan should specify
what the tester should be looking for in each test, and if specific test preparations are required, then these
should be included in the test plan too.

A typical security test plan might contain the following elements:

• Purpose

• Software Under Test Overview

• Software and Components

• Test Boundaries

• Test Limitations

• Risk Analysis

• Synopsis of Risk Analysis

• Test Strategy

• Assumptions
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• Test Approach

• Items Not To Be Tested

• Test Requirements

• Functionality Test Requirements

• Security Test Requirements

• Installation/Configuration Test Requirements

• Stress and Load Test Requirements

• User Documentation

• Personnel Requirements

• Facility and Hardware Requirements

• Test Environment

• Test Case Specifications

• Unique Test Identifier

• Requirement Traceability (what requirement number from requirement document does test case
validate)

• Input Specifications

• Output Specifications/Expected Results

• Environmental Needs

• Special Procedural Requirements

• Dependencies Among Test Cases

• Test Automation and Testware

• Testware Architecture

• Test Tools

• Testware

• Test Execution

• Test Entry Criteria

• QA Acceptance Tests

• Regression Testing

• Test Procedures

Special requirements

Procedure steps

• Test Schedule

• Test Exit Criteria
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• Test Management Plan

• Definitions and Acronyms

Establishing the Test Environment

Testing requires the existence of a test environment. Establishing and managing a proper test
environment is critical to the efficiency and effectiveness of a testing effort. For simple application
programs, the test environment may consist of a single computer, but for enterprise-level software
systems, the test environment may be much more complex, and the software may be closely coupled to
the environment.

For security testing, it is often necessary for the tester to have more control over the environment than in
other testing activities. This is because the tester must be able to examine and manipulate
software/environment interactions at a greater level of detail, in search of weaknesses that could be
exploited by an attacker. The tester must also be able to control these interactions. The test environment
should be isolated, especially if, for example, a test technique produces potentially destructive results
during testing that might invalidate the results of any concurrent test activity.

Although it is not a good practice, it often happens that establishing the test environment is deferred until
a week or so before the test execution begins. This may result in delays for starting execution, significant
cost overruns, and encountering numerous problems at the onset of execution due to an inadequate or
untested environment. The leader of the test stage will be responsible for ensuring that the architecture
or technical environment team is beginning the process of establishing the environment during test
planning so that it is ready to use for scripting.

The environment must be ready for the initial code migration two to four weeks prior to execution.
Databases should also be populated via conversion programs or file load facilities. Once the
environment is set up, a testing resource, in conjunction with a resource involved in setting up the
environment, should execute portions of the test to ensure that the environment is set up correctly. This
saves time up front by reducing the number of problems specifically related to the environment and
ensures that all testers are productive at the onset of the test execution. In addition, this test serves as the
inspection of the exit criteria of the environment setup.

Keep in mind that as the testing process progresses, environments from previous stages of testing will
still be needed to support regression testing of defects.

Just prior to execution, the leader of a test stage will need to ensure that architecture and technical
support personnel are allocated to support the environment and a support schedule is developed by areas
of expertise (DBAs, network specialists, etc.), identifying a primary and secondary contact for each day
of execution. This support schedule should be distributed to the test executors.

Setting up this operational environment early on prevents unforeseen testing delays that might be caused
by nonessential setup errors. It also helps ensure a thorough understanding of risks associated with the
operational environment.

This preparatory activity can best be understood by thinking of testing as an activity closely analogous to
software development, involving its own requirements, specifications, support tools, version control, and
so on. In a well-planned software development process, developers should not get stuck because of
missing tools, missing information about how modules will work together, confusion about software
versions, and so on, and the same is true of a well-planned test process.

Like risk analysis, test planning is a holistic process. It is also fractal in the sense that similar activities
take place at different levels of abstraction: there is often a master test plan that outlines the entire test
process, augmented by more detailed test plans for individual test stages, individual modules, and so on.
For example, the master test plan for a web server might state that unit testing is carried out by
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developers, followed by module testing performed by test engineers, integration testing in a straw-man
environment, system testing in a simulated real environment, and stress testing with specialized tools (a
real test plan generally includes more phases than this). Each of these test phases might have its own test
plan, and for each phase there may be a test plan for each artifact that is being tested.

Relevant Metrics

Gerald Weinberg once stated, ”It’s possible to meet any goal on a software project so long as the quality
standard is not fixed.” It’s true. It’s simple to make a project appear as if it’s running on schedule when
you don’t have to meet any quality standard. Every status report needs to show objective measures of
progress, such as how many tests have been executed and how many are passing. It should also show a
cumulative graph of the number of defects reported and the number fixed. Without this information, it is
meaningless to claim that a project is on schedule.

Both the quantity and quality of testing needs to be measured to help make a quantifiable assessment
about how well the software has been tested. Unfortunately, there are no industry-standard metrics for
measuring test quantity and test quality, although several published papers have proposed such
measures. In general, test metrics are used as a means of determining when to stop testing and when to
release the software to the customer.

The test criteria to be considered and the rationale behind using these criteria are described below.

• Test requirements criteria: One of the purposes of testing is to demonstrate that the software
functions as specified by the requirements. Thus every software requirement must be tested by at
least one corresponding test case. By having traceability from test cases to functional requirements,
one can determine the percentage of requirements tested to the total number of requirements. Thus,
test requirement metric is defined as the ratio of requirements tested to the total number of
requirements.

• Test coverage criteria: Testing should attempt to exercise as many ”parts” of the software as
possible, since code that is not exercised can potentially hide faults. Exercising code
comprehensively involves covering all the execution paths through the software. Unfortunately, the
number of such paths in even a small program can be astronomical, and hence it is not practical to
execute all these paths. The next best thing is to exercise as many statements, branches, and
conditions as possible. Thus, we can define the test coverage criteria such as statement coverage,
branch coverage, etc. Standard off-the-shelf coverage tools can be used to monitor coverage levels as
testing progresses.

• Test case metric: This metric is useful when it is plotted with respect to time. Essentially, such a plot
will show the total number of test cases created, how many have been exercised, how many test
cases have passed, and how many have failed over time. This project-level metric provides a
snapshot of the progress of testing#where the project is today and what direction it is likely to take
tomorrow.

• Defect metrics: This metric is also very useful when plotted with respect to time. It is more
informative to plot cumulative defects found since the beginning of testing to the date of the report.
The slope of this curve provides important information. If the slope of the curve is rising sharply,
large numbers of defects are being discovered rapidly, and certainly testing efforts must be
maintained, if not intensified. In contrast, if the slope is leveling off, it might mean fewer failures are
being found. It might also mean that the quality of testing has decreased.

Ultimately, the effectiveness of testing can only be deduced when data on defects is collected in
actual operational use after the software is released. It is recommended that defects found during
actual operational use be measured consistently at two standard points after delivery to the user(s),
such as three and six months. (This will clearly depend on the release schedule. For example, a six
month sampling period will not be appropriate for software with a four month release schedule.)
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• Test case quality metric: Test cases ”fail” when the application under test produces a result other
than what is expected by the test case. This can happen due to several reasons, one being a true
defect in the application. Other reasons could be a defect in the test case itself, a change in the
application, or a change in the environment of the test case. A test case can be defined to be of high
quality whenever it finds a true defect in the application. Test case quality metric can be defined as
the ratio of test case failures resulting in a defect to the total number of test case failures.

The most important of these metrics are defect metrics. Defect metrics must be collected and carefully
analyzed in the course of the project. These are very important data. Some of these metrics may require
that the problem tracking system be modified.

Information to track about each defect includes

• date found

• date resolved

• status (open: need attention by owner; resolved: decision or fix made, needs verification by QA;
concluded: resolution verified by QA)

• resolution (fixed, deferred, cannot reproduce, rejected - not a bug, duplicate)

• brief description

• detailed description (steps to reproduce, expected results, actual results, notes)

• priority

• severity

• waiver status (used after code freeze)

• reported by

• assigned to

• found in (build version)

• fixed in (build version)

• product area

• module(s)

• error type (from error taxonomy)

• fix effort (in hours)

• how found (test case ###, exploratory)

• comments

• audit trail of any changes to the problem report

The following is a brief description of the priority and severity fields in a defect report.

Priority: This is a measure of the probability that the failure mode can occur in the field during typical
usage, such as a scale from 1 (most damage) to 5 (least damage).

Severity: This denotes the absolute severity of the failure mode in question, regardless of probability of
occurrence. The scale could be as follows:
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1. loss of data, system completely unusable (can’t use system, user is blocked)

2. loss of functionality with no workaround

3. loss of functionality with a workaround

4. partial loss of functionality

5. cosmetic or trivial

Reporting
All time-oriented metrics should be measured on a daily scale. These metrics should be automated so
they are updated on a daily basis. The reports should be available for the whole system and on the level
of individual product areas.

These are the major reports to produce. Others may be useful, depending on the circumstances:

• total open, by priority

• stop-ship problems (as indicated by waiver field)

• find rate, by severity (daily and 15-day rolling average)

• resolution type versus severity for all resolved problems (total and last 15 days)

• unreviewed problems, by priority

• unverified resolutions (a.k.a. QA backlog)

• who found (by function)

• reopen rate, over time (number of problems with resolutions that were rejected by QA, and thus
reopened rather than concluded)

Collection Protocol

The problem database should be maintained primarily by the test team. All problems found by anyone
during and after functional testing must be logged in the database. Encourage the developers to submit
problems to testers for entry into the database, since the alternative is that many problem reports won’t
be logged at all.

This protocol can be enforced easily by requiring that all changes made after code freeze are associated
with a problem number. Prior to each build, the change list is then compared to the problem tracking
system.

Problems found by customer engineering, and ultimately the customer, are also important to track.

How To Use the Metrics

Defect metrics are vital to the successful management of a high assurance test project. A complete
treatment of the subject is beyond the scope of this report. However, here are a few important points to
keep in mind:

• Defect metrics should be used by the test manager and the project manager, on more or less a daily
basis, to review the status of the product, scan for risks, and guide the testing effort toward areas of
greatest risk.

• The product should ship with 0 open problem reports, and 0 resolved but not verified. All problem
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reports should be resolved and verified.

• We do not recommend a find rate requirement (e.g., no defects found for a week) for shipping the
product, since such requirements are arbitrary and subject to accidental abuse. We do recommend
reviewing each and every problem found in the final third or quarter of the project and using that
information to question the efficacy of the test effort and to re-analyze technical risk. This is far
more useful than an aggregate find rate at apprising management of the product’s readiness to ship.

• While we don’t advocate a find rate requirement for shipping, a 15-day rolling average defect find
rate that drops substantially below the highest fifteen day rolling average find rate for important bugs
(say, the top two severity or priority categories) in the project should trigger inquiry into whether a
new release is needed or whether new tests or test techniques should be employed. Keeping the
important problem find rate as high as possible throughout the project is an important goal of the test
team.

• The problem reopen rate is an indicator of the competence of the testers, the health of the
relationship between testing and development, the testability of the product, and the thoroughness of
developers in investigating and resolving problems. In general, the reopen rate should start low (less
than 1 out of 10 resolutions rejected) and get steadily lower over the course of the project.

Case Study

Although it is strongly recommended that an organization not rely exclusively on security test activities
to build security into a system, security testing, when coupled with other security activities performed
throughout the SDLC, can be very effective in validating design assumptions, discovering vulnerabilities
associated with the application environment, and identifying implementation issues that may lead to
security vulnerabilities.

For example, an organization had assembled a large software development team to build a high-profile
Internet-based gaming system. The gaming system was planned to augment an existing,
government-sponsored, paper-based gaming system. Understanding the broad and potentially significant
security implications relating to the system, the development organization made every effort to design
security into the product. A security architect was involved with the development effort from initial
requirement generation through system delivery. Security activities were conducted throughout the
SDLC to ensure that security was built into the system. These included the following:

• Security-based requirements were developed.

• Security-based risk assessments to identify areas of greatest risk to the business and the technology
platform were completed.

• Findings from the risk assessments were addressed in the security architecture and implementation.

• Security-based design and architecture reviews were conducted.

• Security training was provided to developers.

• Code reviews were conducted on security-critical components.

Despite these efforts, an issue associated with the input validation component was identified during
system-level security testing. Although input validation was engineered into the overall design and the
component had been previously approved in both design and code reviews, there was an issue. The
source of the problem was later identified to be associated with the build process. An incorrectly
functioning and previously rejected input validation component had made its way into the final build.
Had it not been for the final system-level security test activity, the system would have been deployed
with the faulty input validation mechanism.
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Glossary

acceptance testing

Formal testing conducted to enable a user, customer, or other authorized entity to determine
whether to accept a system or component. [IEEE 90412]

ad hoc testing

Testing carried out using no recognized test case design technique. [BS-7925413]

authentication

The process of confirming the correctness of the claimed identity. [SANS 03414]

black box testing

Testing that is based on an analysis of the specification of the component without reference to its
internal workings. [BS-7925415]

buffer overflow

A buffer overflow occurs when a program or process tries to store more data in a data storage area
than it was intended to hold. Since buffers are created to contain a finite amount of data, the extra
information—which has to go somewhere—can overflow into the runtime stack, which contains
control information such as function return addresses and error handlers.

buffer overflow attack

See stack smashing.

bug

See fault.

capture/replay tool

A test tool that records test input as it is sent to the software under test. The input cases stored can
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then be used to reproduce the test at a later time. [BS-7925416]

compatibility testing

Testing whether the system is compatible with other systems with which it should communicate.
[BS-7925417]

component

A minimal software item for which a separate specification is available. [BS-7925418]

conformance testing

The process of testing that an implementation conforms to the specification on which it is based.
[BS-7925419]

cookie

Data exchanged between an HTTP server and a browser (a client of the server) to store state
information on the client side and retrieve it later for server use. An HTTP server, when sending
data to a client, may send along a cookie, which the client retains after the HTTP connection
closes. A server can use this mechanism to maintain persistent client-side state information for
HTTP-based applications, retrieving the state information in later connections. [SANS 03420]

correctness

The degree to which software conforms to its specification. [BS-7925421]

cryptographic attack

A technique for successfully undermining an encryption scheme.

cryptography

Cryptography garbles a message in such a way that anyone who intercepts the message cannot
understand it. [SANS 03422]

domain

The set from which values are selected. [BS-7925423]
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domain testing

Testing with test cases based on the specification of input values accepted by a software
component. [Beizer 90424]

dynamic analysis

The process of evaluating a system or component based on its behavior during execution. [IEEE
90425]

Dynamic Link Library (DLL)

A collection of small programs, any of which can be called when needed by a larger program that
is running in the computer. Small programs that enable larger programs to communicate with a
specific device such as a printer or scanner are often packaged as DLL programs (usually referred
to as DLL files). [SANS 03426]

encryption

Cryptographic transformation of data (called ”plaintext”) into a form (called ”cipher text”) that
conceals the data’s original meaning to prevent it from being known or used. [SANS 03427]

failure

The inability of a system or component to perform its required functions within specified
performance requirements. [IEEE 90428]

fault

A manifestation of an error in software. A fault, if encountered, may cause a failure. [RTCA 92429]

Hypertext Transfer Protocol (HTTP)

The protocol in the Internet Protocol (IP) family used to transport hypertext documents across an
internet. [SANS 03430]

integration testing

Testing performed to expose faults in the interfaces and in the interaction between integrated
components. [BS-7925431]
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interface testing

Integration testing in which the interfaces between system components are tested. [BS-7925432]

isolation testing

Component testing of individual components in isolation from surrounding components, with
surrounding components being simulated by stubs. [BS-7925433]

kernel

The essential center of a computer operating system, the core that provides basic services for all
other parts of the operating system. A synonym is nucleus. A kernel can be contrasted with a
shell, the outermost part of an operating system that interacts with user commands. Kernel and
shell are terms used more frequently in UNIX and some other operating systems than in IBM
mainframe systems. [SANS 03434]

National Institute of Standards and Technology (NIST)

A unit of the U.S. Commerce Department. Formerly known as the National Bureau of Standards,
NIST promotes and maintains measurement standards. It also has active programs for encouraging
and helping industry and science to develop and use these standards. [SANS 03435]

negative requirements

Requirements that state what software should not do.

operational testing

Testing conducted to evaluate a system or component in its operational environment. [IEEE 90436]

port

A port is nothing more than an integer that uniquely identifies an endpoint of a communication
stream. Only one process per machine can listen on the same port number. [SANS 03437]

precondition

Environmental and state conditions that must be fulfilled before the component can be executed
with a particular input value.

protocol
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438. #refs

439. #refs

440. #refs

441. #refs

442. #refs

443. #refs

444. #refs

A formal specification for communicating; the special set of rules that end points in a
telecommunication connection use when they communicate. Protocols exist at several levels in a
telecommunication connection. [SANS 03438]

pseudorandom

Appearing to be random, when actually generated according to a predictable algorithm or drawn
from a prearranged sequence.

race condition

A race condition exploits the small window of time between a security control being applied and
the service being used. [SANS 03439]

registry

The registry in Windows operating systems is the central set of settings and information required
to run the Windows computer. [SANS 03440]

regression testing

Retesting of a previously tested program following modification to ensure that faults have not
been introduced or uncovered as a result of the changes made. [BS-7925441]

requirement

A capability that must be met or possessed by the system/software (requirements may be
functional or non-functional). [BS-7925442]

requirements-based testing

Designing tests based on objectives derived from requirements for the software component (e.g.,
tests that exercise specific functions or probe the non-functional constraints such as performance
or security). [BS-7925443]

reverse engineering

Acquiring sensitive data by disassembling and analyzing the design of a system component
[SANS 03444]; acquiring knowledge of a binary program’s algorithms or data structures.

risk assessment
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446. #refs

447. #refs

448. #refs

449. #refs

450. #refs
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452. #refs

The process by which risks are identified and the impact of those risks is determined. [SANS
03445]

security policy

A set of rules and practices that specify or regulate how a system or organization provides security
services to protect sensitive and critical system resources. [SANS 034463]

server

A system entity that provides a service in response to requests from other system entities called
clients. [SANS 03447]

session

A virtual connection between two hosts by which network traffic is passed. [SANS 03448]

socket

The socket tells a host’s IP stack where to plug in a data stream so that it connects to the right
application. [SANS 03449]

software

Computer programs (which are stored in and executed by computer hardware) and associated data
(which also is stored in the hardware) that may be dynamically written or modified during
execution. [SANS 03450]

specification

A description, in any suitable form, of requirements. [BS-7925451]

specification testing

An approach to testing wherein the testing is restricted to verifying that the system/software meets
the specification. [BS-7925452]

SQL Injection

SQL injection is a type of input validation attack specific to database-driven applications where
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453. #refs

454. #refs

455. #refs

456. #refs

457. #refs

458. #refs

459. #refs

460. #refs

461. #refs

SQL code is inserted into application queries to manipulate the database. [SANS 03453]

stack smashing

The technique of using a buffer overflow to trick a computer into executing arbitrary code. [SANS
03454]

state transition

A transition between two allowable states of a system or component. [BS-7925455]

state transition testing

A test case design technique in which test cases are designed to execute state transitions.
[BS-7925456]

static analysis

Analysis of a program carried out without executing the program. [BS-7925457]

static analyzer

A tool that carries out static analysis. [BS-7925458]

stress testing

Testing conducted to evaluate a system or component at or beyond the limits of its specified
requirements. [IEEE 90459]

stub

A skeletal or special-purpose implementation of a software module used to develop or test a
component that calls or is otherwise dependent on it. [IEEE 90460].

syntax testing

A test case design technique for a component or system in which test case design is based on the
syntax of the input. [BS-7925461]
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462. #refs

463. #refs

464. #refs

465. #refs

466. #refs

467. #refs

system testing

The process of testing an integrated system to verify that it meets specified requirements. [Hetzel
88462]

test automation

The use of software to control the execution of tests, the comparison of actual outcomes to
predicted outcomes, the setting up of test preconditions, and other test control and test reporting
functions.

test case

A set of inputs, execution preconditions, and expected outcomes developed for a particular
objective, such as to exercise a particular program path or to verify compliance with a specific
requirement. [IEEE 90463]

test suite

A collection of one or more test cases for the software under test. [BS-7925464]

test driver

A program or test tool used to execute software against a test suite. [BS-7925465]

test environment

A description of the hardware and software environment in which tests will be run and any other
software with which the software under test interacts when under test, including stubs and test
drivers. [BS-7925466]

test plan

A record of the test planning process detailing the degree of tester independence, the test
environment, the test case design techniques and test measurement techniques to be used, and the
rationale for their choice. [BS-7925467]

testware

Software associated with carrying out tests, such as test drivers, stubs, and software needed to set
up and tear down test cases.

vulnerability
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A defect or weakness in a system’s design, implementation, or operation and management that
could be exploited to violate the system’s security policy. [SANS 03468]

web server

A software process that runs on a host computer connected to the Internet to respond to HTTP
requests for documents from client web browsers.
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